Physics Department Colloquium

Effective field theories for phases of matter and cosmology

When
-

Abstract: I will review some modern applications of effective field theories outside their traditional particle physics domain. In particular, I will focus on spontaneous symmetry breaking for spacetime symmetries. The effective theories for the associated Goldstone excitations capture the low-energy/long-distance dynamics of a number of physical systems, from ordinary macroscopic media (solids, fluids, superfluids, supersolids) to more exotic cosmological ones.

Electron fractionalization in topological quantum materials

When
-

Abstract: The emergence of quasiparticles with fractional charge and fractional statistics is an essential feature of fractional quantum Hall states, which occur in two-dimensional electron gas under a strong magnetic field. An interesting question is whether fractional electron states can form spontaneously in quantum materials without the external magnetic field.

Symmetry, topology and electronic phases of matter

When
-

Abstract: Symmetry and topology are two of the conceptual pillars that underlie our understanding of matter. While both ideas are old, over the past several years a new appreciation of their interplay has led to dramatic progress in our understanding of topological electronic materials. A paradigm that has emerged is that insulating electronic states with an energy gap fall into distinct topological classes. Interfaces between different topological phases exhibit gapless conducting states that are protected and are impossible to get rid of.

Waves of Topological Origin in the Fluid Earth System and Beyond

When
-

Abstract: Symmetries and topology are central to our understanding of physical systems. Topology, for instance, explains the precise quantization of the Hall effect and the protection of surface states in topological insulators against scattering from disorder or bumps. However discrete symmetries and topology have not, until recently, contributed much to our understanding of the fluid dynamics of oceans and atmospheres.

Programmable quantum sensing using ultracold atoms in 3D optical lattices

When
-

Abstract: The creation of a matter-wave interferometer can be achieved by loading Bose-Einstein condensed atoms into a crystal of light formed by interfering laser beams. By translating this optical lattice in a specific way, the traditional steps of interferometry can all be implemented, i.e., splitting, propagating, reflecting, and recombining the quantum wavefunction. Using this concept, we have designed and built a compact device to sense inertial signals, including accelerations, rotations, gravity, and gravity gradients.

Collapse and Ejection in the N-body problem and the Formation of Rubble Pile Asteroids

When
-

Abstract: Rubble pile asteroids are thought to form in the aftermath of cataclysmic collisions between proto-planets. The details of how the detritus from such collisions reaccumulate to form these bodies are not well understood, yet can play a fundamental role in the subsequent evolution of these bodies in the solar system. Simple items such as how particle sizes and porosity is distributed within a body can have a significant influence on how they subsequently evolve.

Turbulent Origins of the Sun's Hot Corona and the Solar Wind

When
-

Abstract: The solar corona is the hot and ionized outer atmosphere of the Sun.  It traces out the complex solar magnetic field and expands into interplanetary space as the supersonic solar wind.  In 1958, Eugene Parker theorized that the presence of a million-degree corona necessarily requires the outward acceleration of a wind.  However, despite many years of exploration of both phenomena, we still do not have a complete understanding of the processes that heat the coronal plasma to its bizarrely high temperatures.

Exploring many-body problems with arrays of individual atoms

When
-

Abstract: Over the last twenty years, physicists have learned to manipulate individual quantum objects: atoms, ions, molecules, quantum circuits, electronic spins... It is now possible to build "atom by atom" a synthetic quantum matter. By controlling the interactions between atoms, one can study the properties of these elementary many-body systems: quantum magnetism, transport of excitations, superconductivity...